머신러닝에서 대표적으로 사용되는 분류(Classification) 알고리즘들에 대하여 종류별로 장단점을 간략하게 정리해보도록 하겠습니다. 1. 의사결정나무(Decision Tree) 장점 1. 결과가 나온 과정을 쉽게 추적할 수 있어 설명 가능성이 높다. 2. 정규화 과정이 필요 없고, 데이터의 분포에 상관 없이 적용 가능하다. 3. 범주형, 연속형, 이산형 변수 모두를 다룰 수 있다. 단점 1. 과적합에 매우 취약하여 가지치기가 중요하다. 2. 시계열 데이터나 고차원 데이터에는 적용하기 어렵다. 3. 경계값 근처에서 오류가 발생하기 쉽다. 2. 랜덤포레스트(Random Forest) 장점 1. 의사결정나무의 2, 3번 장점을 그대로 가져갈 수 있다. 2. 의사결정나무의 과적합 문제를 보완할 수 있다. ..